中文字幕第二一区_久久久久在线视频_精品国产自在现线看久久_亚洲精品一区二区三区电影网

產品分類

當前位置: 首頁 > 工業控制產品 > 樓宇自動化 > 綜合布線系統 > 布線專用安裝工具

類型分類:
科普知識
數據分類:
布線專用安裝工具

利用數字隔離器技術增強工業電機控制性能

發布日期:2022-10-09 點擊率:118

【導讀】隔離用戶及敏感電子部件是電機控制系統的重要考慮事項。安全隔離用于保護用戶免受有害電壓影響,功能隔離則專門用來保護設備和器件。電機控制系統可能包含各種各樣的隔離器件,例如:驅動電路中的隔離式柵極驅動器;檢測電路中的隔離式ADC、放大器和傳感器;以及通信電路中的隔離式SPI、RS-485、標準數字隔離器。無論是出于安全原因,還是為了優化性能,都要求精心選擇這些器件。

 

雖然隔離是很重要的系統考慮,但它也存在缺點:會提高功耗,跨過隔離柵傳輸數據會產生延遲,而且會增加系統成本。系統設計師傳統上求助于光隔離方案,多年來,它是系統隔離的當然選擇。最近十年來,基于磁性(變壓器傳輸)方法的數字隔離器提供了一種可行且在很多時候更優越的替代方案;從系統角度考慮,它還具備系統設計師可能尚未認識到的優點。

 

本文將討論這兩種隔離解決方案,重點論述磁隔離對延遲時序性能的改善,以及由此給電機控制應用在系統層面帶來的好處。

 

隔離方法

 

光耦利用光作為主要傳輸方法,如圖1所示。發送側包括一個LED,高電平信號開啟LED,低電平信號關閉LED。接收側利用光電檢測器將接收到的光信號轉換回電信號。隔離由LED與光電檢測器之間的塑封材料提供,但也可利用額外的隔離層(通常基于聚合物)予以增強。

 

利用數字隔離器技術增強工業電機控制性能

圖1. 光耦結構

 

光耦的最大缺點之一是:LED老化,會使傳輸特性漂移;設計人員必須考慮這一額外問題。LED老化導致時序性能隨著時間和溫度而漂移。因此,信號傳輸和上升/下降時間會受影響,使設計復雜化,尤其是考慮到本文后面要處理的問題。

 

光耦的性能擴展也是受限的。為了提高數據速率,必須克服光耦固有的寄生電容問題,該問題會導致功耗升高。寄生電容還會提供耦合機制,導致基于光耦的隔離器件的CMTI(共模瞬變抗擾度)性能劣于競爭方案。

 

磁隔離器(基于變壓器)已大規模應用十多年,是光耦合器的有效替代方案。這類隔離器基于標準CMOS技術,采用磁傳輸原理,隔離層由聚酰亞胺或二氧化硅構成,如圖2所示。低電平電流以脈沖方式通過線圈傳輸,產生一個磁場,磁場穿過隔離柵,在隔離柵另一側的第二線圈中感生一個電流。由于采用標準CMOS結構,其在功耗和速度方面具有明顯優勢,而且不存在光耦合器相關的壽命偏差問題。此外,基于變壓器的隔離器的CMTI性能優于基于光耦合器的隔離器。

 

利用數字隔離器技術增強工業電機控制性能

圖2. 磁性變壓器結構

 

基于變壓器的隔離器還允許使用常規的信號處理模塊(防止傳輸雜散輸入)和高級傳輸編解碼機制。這樣就可以實現雙向數據傳輸,使用不同編碼方案來優化功耗與傳輸速率的關系,以及將重要信號更快速、更一致地傳輸到隔離柵另一端。

 

延遲特性比較

 

所有隔離器的一個重要但常常被輕視的特性是其傳輸延遲。此特性衡量信號(可以是驅動信號或故障檢測信號)沿任一方向跨過隔離柵所需的時間。技術不同,傳輸延遲差別很大。通常提供的是典型延遲值,但系統設計師特別關注最大延遲,它是設計電機控制系統需要考慮的重要特性。表1給出了光耦合器和磁隔離柵極驅動器的傳輸延遲和延遲偏差值示例。

 

利用數字隔離器技術增強工業電機控制性能

表1: 光耦合器和磁隔離器的典型延遲特性

 

如表1所示,磁隔離在最大延遲和延遲可重復性(偏差)方面優勢明顯。這樣,電機控制設計人員對設計將更有信心,無需增加時序裕量以滿足柵極驅動器特性。對于電機控制系統的性能和安全,這都有著非常重要的意義。

 

對電機控制系統的系統影響

 

圖3顯示了交流電機控制應用中采用的典型三相逆變器。該逆變器由直流母線供電,直流電源通常是通過二極管橋式整流器和容性/感性-容性濾波器直接從交流電源產生。在大部分工業應用中,直流母線電壓在300 V至1000 V范圍內。采用脈寬調制(PWM)方案,以5 kHz至10 kHz的典型頻率切換功率晶體管T1至T6,從而在電機端子上產生可變電壓、可變頻率的三相正弦交流電壓。

 

利用數字隔離器技術增強工業電機控制性能

圖3. 電機控制應用中的三相逆變器

 

PWM信號(如PWMaH和PWMaL)在電機控制器(一般用處理器和/或FPGA實現)中產生。這些信號一般是低壓信號,與處理器共地。為了正確開啟和關閉功率晶體管,邏輯電平信號的電壓電平和電流驅動能力必須被放大, 另外還必須進行電平轉換,從而以相關功率晶體管發射極為接地基準。根據處理器在系統中的位置,這些信號可能還需要安全絕緣。

 

柵極驅動器(如圖3中的GDRVaL和GDRVaH)執行這種功能。每個柵極驅動器IC都需要一個以處理器地為基準的原邊電源電壓和一個以晶體管發射極為基準的副邊電源。副邊電源的電壓電平必須能夠開啟功率晶體管(通常為15 V),并有足夠的電流驅動能力來給晶體管柵極充電和放電。

 

逆變器死區時間

 

功率晶體管有一個有限的開關時間,因此,上橋和下橋晶體管之間的脈寬調制波形中必須插入一個死區時間,如圖4所示。這是為了防止兩個晶體管意外同時接通,引起高壓直流母線短路,進而造成系統故障和/或損壞風險。死區時間的長度由兩個因素決定:晶體管開關時間和柵極驅動器傳輸延遲失配(包括失配的任何漂移)。換言之,死區時間必須考慮PWM信號從處理器到上橋和下橋柵極驅動器之間的晶體管柵極的任何傳輸時間差異。

 

利用數字隔離器技術增強工業電機控制性能

圖4. 死區時間插補

 

死區時間會影響施加到電機的平均電壓,尤其是在低速運轉時。實際上,死區時間會帶來以下近似恒定幅度的誤差電壓:

 

利用數字隔離器技術增強工業電機控制性能

 

其中,利用數字隔離器技術增強工業電機控制性能為誤差電壓,利用數字隔離器技術增強工業電機控制性能為死區時間,利用數字隔離器技術增強工業電機控制性能利用數字隔離器技術增強工業電機控制性能為晶 體管開啟和關閉延遲時間,利用數字隔離器技術增強工業電機控制性能為PWM開關周期,利用數字隔離器技術增強工業電機控制性能為直流母線電壓,利用數字隔離器技術增強工業電機控制性能為功率晶體管的導通狀態壓降,利用數字隔離器技術增強工業電機控制性能為二極管導通電壓。

 

當一個相電流改變方向時,誤差電壓改變極性,因此,當線路電流過零時,電機線間電壓發生階躍變化。這會引起正弦基波電壓的諧波,進而在電機中產生諧波電流。對于開環驅動采用的較大低阻抗電機,這是一個特別重要的問題,因為諧波電流可能很大,導致低速振動、扭矩紋波和諧波加熱。

 

在以下條件下,死區時間對電機輸出電壓失真的影響最嚴重:

 

  • 高直流母線電壓

  • 長死區時間

  • 高開關頻率

  • 低速工作,特別是在控制算法未添加任何補償的開環驅動中

 

低速工作很重要,因為正是在這種模式下,施加的電機電壓在任何情況下都非常低,死區時間導致的誤差電壓可能是所施加電機電壓的很大一部分。此外,誤差電壓導致的扭曲抖動的影響更有害,因為對系統慣性的濾波只有在較高速度下才可用。

 

在所有這些參數中,死區時間長度是唯一受隔離式柵極驅動器技術影響的參數。死區時間長度的一部分是由功率晶體管的開關延遲時間決定的,但其余部分與傳播延遲失配有關。在這方面,光隔離器顯然不如磁隔離技術。

 

應用示例

 

為了說明死區時間對電機電流失真的影響,下面給出了基于三相逆變的開環電機驅動的結果。逆變器柵極驅動器采用ADI公司的磁隔離器(ADuM4223ADuM4223), 直接驅動IR的IRG7PH46UDPBF 1200 V IGBT。直流母線電壓為700 V。逆變器驅動開環V/f控制模式下的三相感應電機。利用阻性分壓器和分流電阻,并結合隔離式∑–? 調制器(同樣是來自ADI公司的AD7403),分別測量線電壓和相電流。各調制器輸出的單位數據流被送至控制處理器(ADI公司的ADSP-CM408)的sinc濾波器,數據在其中進行濾波和抽取后,產生電壓和電流信號的精確表示。

 

sinc數字濾波器輸出的線電壓實測結果如圖5所示。實際線電壓為10 kHz的高開關頻率波形,但它被數字濾波器濾除,以便顯示我們感興趣的低頻部分。相應的電機相電流如圖6 所示。

 

利用數字隔離器技術增強工業電機控制性能

圖5. 實測線間電機電壓:(左)500 ns死區時間;(右)1 μs死區時間

 

利用數字隔離器技術增強工業電機控制性能

圖6. 實測電機電流:(左)500 ns死區時間;(右)1μs死區時間

 

ADuM4223柵極驅動器的傳輸延遲失配為12 ns,因此可以使用IGBT開關所需的絕對最短死區時間。對于IR IGBT,最短死區時間可設置為500 ns。從左圖可看出,這種情況下的電壓失真極小。同樣,相電流也是很好的正弦波,因此扭矩紋波極小。右圖顯示死區時間提高到1 μs時的線電壓和相電流。此值更能代表光耦合柵極驅動器的需求,因為其傳播延遲失配和漂移更大。電壓和電流的失真均有明顯增加。這種情況使用的感應電機是相對較小的高阻抗電機。在更高功率的終端應用中,感應電機阻抗通常要低得多,導致電機電流失真和扭矩紋波增加。扭矩紋波在很多應用中都會產生有害影響,例如:電梯乘坐舒適度下降或機械系統中的軸承/聯軸器磨損。

 

過流關斷

 

現代柵極驅動器的另一個重要問題是處理器發出的關斷命令能以多快的速度在IGBT上實現。這對于以下情況中的過流關斷很重要:過流檢測不是柵極驅動器本身的一部分,而是作為檢測與濾波電路的一部分加以實現。這方面的另一個壓力是更高效率IGBT的短路耐受時間縮短。對此,IGBT技術的趨勢是從業界標準10μs縮短到5 μs甚至更短。如圖7所示,過流檢測電路通常需要數微秒時間來鎖存故障;為了順應總體發展趨勢,必須采取措施來縮短這一檢測時間。該路徑中的另一主要因素是從處理器/FPGA輸出到IGBT柵極(柵極驅動器)的傳播延遲。同樣,磁隔離器相對于光學器件有明顯優勢,原因是前者的傳播延遲值非常小,通常在50 ns左右,不再是影響因素。相比之下,光耦合器的傳播延遲在500 ns左右,占到總時序預算的很大一部分。

 

利用數字隔離器技術增強工業電機控制性能

圖7. 故障關斷時序

 

電機控制應用的柵極驅動器關斷時序如圖8所示,其中處理器的關斷命令跟在IGBT柵極發射極信號之后。從關斷信號開始到IGBT柵極驅動信號接近0的總延遲僅有72 ns。

 

利用數字隔離器技術增強工業電機控制性能

圖8. 過流關斷柵極驅動器時序

 

小結

 

隨著人們更加關注系統性能、效率和安全,電機控制架構師在設計穩健系統時面臨著日益復雜的挑戰。基于光耦合器的柵極驅動器是傳統選擇,但基于變壓器的解決方案不僅在功耗、速度、時間穩定性上更具優勢,而且如本文所述,由于信號延遲縮短,其在系統性能和安全方面也有明顯優勢。這使得設計人員可以在防止上橋和下橋開關同時接通的同時,有把握地縮短死區時間,改善系統性能。此外,它還支持對系統命令和錯誤作出更快速的響應,這同樣能增強系統可靠性并提高安全性。鑒于這些優勢,基于變壓器的隔離式柵極驅動器已成為電機控制系統設計的一個主要選擇;強烈建議系統設計人員在設計下一個項目時,把器件延遲作為一項重要要求。

 

本文轉載自亞德諾半導體。

 

 

 

 

 

 

 

 

 

推薦閱讀:




世界首創玻璃鋁密封端子,可大幅提升電容性能

精密光電二極管傳感器電路優化設計

家電閑時功耗多少?結果超出想象!

MEMS加速度計的振動校正

用射頻采樣ADC破解寬帶難題

 

 

 

下一篇: PLC、DCS、FCS三大控

上一篇: 微軟,索尼,谷歌進軍VR

推薦產品

更多
中文字幕第二一区_久久久久在线视频_精品国产自在现线看久久_亚洲精品一区二区三区电影网

      99精品欧美一区二区三区 | 狠狠色狠狠色综合日日tαg | 久久久久高清| 国产亚洲精品久久久久久| 亚洲综合清纯丝袜自拍| 欧美日韩一卡| 亚洲一区图片| 国产亚洲综合在线| 免费成年人欧美视频| 99国产精品一区| 国产精品入口| 麻豆精品在线视频| 亚洲狼人综合| 国产精品视频网址| 免播放器亚洲| 一区二区三区国产| 国内久久精品| 亚洲午夜极品| 在线日韩成人| 欧美成人小视频| 亚洲一区二区视频在线观看| 欧美另类在线播放| 欧美在线亚洲| 欧美jjzz| 久久久蜜桃一区二区人| 欧美日韩久久精品| 亚洲一二三级电影| 韩日视频一区| 欧美性片在线观看| 噜噜噜91成人网| 性xx色xx综合久久久xx| 国产热re99久久6国产精品| 欧美大片在线看| 欧美一级欧美一级在线播放| 亚洲国产精品高清久久久| 黑人巨大精品欧美一区二区小视频| 老司机一区二区| 亚洲一区二区三区午夜| 亚洲精品乱码视频| 狠狠干综合网| 国产伦理一区| 国产伦理一区| 国产精品久久一级| 欧美午夜电影一区| 欧美另类综合| 免费成人性网站| 久久精品91久久香蕉加勒比| 一本大道久久a久久综合婷婷| 久久一日本道色综合久久| 性欧美videos另类喷潮| 亚洲桃色在线一区| 一区二区三区日韩| 亚洲精品在线视频| 亚洲另类一区二区| 日韩亚洲视频| 99在线观看免费视频精品观看| 国产女人精品视频| 欧美v日韩v国产v| 久久综合电影| 99日韩精品| 亚洲日本aⅴ片在线观看香蕉| 老司机67194精品线观看| 久久这里有精品视频| 久久久亚洲欧洲日产国码αv | 午夜精品久久久久久久久久久久久| 亚洲国产天堂久久综合| 亚洲二区免费| 欧美日韩性视频在线| 国产精品扒开腿做爽爽爽视频| 欧美日韩一区二区三区四区五区| 欧美日韩另类视频| 国产精品日韩欧美一区二区三区| 国产欧美一区二区精品性| 欧美日本国产精品| 欧美综合国产| 欧美精品免费看| 久久综合婷婷| 久久视频在线视频| 蜜乳av另类精品一区二区| 欧美日韩精品不卡| 久久在线免费观看| 久久久亚洲精品一区二区三区 | 午夜精品久久久久影视| 久久精品视频一| 亚洲黄一区二区| 亚洲一区激情| 久久色在线播放| 欧美国产日韩二区| 久久国产精品黑丝| 欧美va天堂在线| 久久精品男女| 欧美xx视频| 亚洲经典三级| 久久亚洲精品一区| 国产精品成人一区| 亚洲一级一区| 美女日韩欧美| 亚洲激情成人| 久久精品免费看| 欧美日韩一区二区三区四区五区| 亚洲日本欧美日韩高观看| 欧美在线网站| 欧美在线www| 国产精品视频导航| 亚洲国产精品久久久久秋霞影院| 国产欧美 在线欧美| 亚洲最新色图| 欧美激情一区二区三区蜜桃视频 | 欧美性大战久久久久久久| 亚洲成人中文| 久久久久国内| 国产日韩精品视频一区| 亚洲视频电影图片偷拍一区| 久久精品123| 国产欧美一区二区白浆黑人| 在线亚洲电影| 欧美日韩国产专区| 亚洲免费观看高清完整版在线观看熊| 欧美专区一区二区三区| 国产精品区二区三区日本| 午夜在线精品偷拍| 国产精品视频一二三| 亚洲亚洲精品在线观看| 国产一区二区三区在线观看视频| 99精品欧美一区| 欧美日韩亚洲视频| 亚洲欧美日韩一区二区| 国产精品入口尤物| 亚洲视频免费在线| 国内精品视频在线播放| 久久精品国产久精国产一老狼| 国产一区二区三区久久久| 久久综合伊人77777蜜臀| 国产亚洲欧美一区二区三区| 亚洲在线第一页| 国产精品视频| 久久免费国产精品1| 99re视频这里只有精品| 欧美日韩中文| 午夜一区二区三区在线观看| 在线观看三级视频欧美| 欧美激情视频一区二区三区不卡| 国产午夜精品美女视频明星a级| 亚洲国产精品va在线观看黑人| 欧美激情乱人伦| 亚洲一区国产精品| 狠狠色狠狠色综合日日tαg| 欧美大片在线观看一区二区| 中文精品一区二区三区| 国产亚洲欧美在线| 欧美成人日韩| 亚洲小说欧美另类社区| 亚洲美女淫视频| 国产精品一区二区黑丝| 久久久久久久网| 亚洲欧美日韩国产另类专区| 激情欧美一区二区| 国产一区在线视频| 国产精品成人v| 乱中年女人伦av一区二区| 亚洲第一综合天堂另类专| 国产伪娘ts一区| 欧美精品成人在线| 精品动漫一区| 国产精品麻豆va在线播放| 麻豆成人精品| 免费观看在线综合色| 亚洲在线播放| 一本久久综合亚洲鲁鲁| 亚洲二区在线| 国产欧美一区二区三区在线老狼 | 欧美日韩精品免费观看视频| 久久久国产精品一区二区三区| 亚洲精品久久久久| 国产日韩欧美制服另类| 欧美v国产在线一区二区三区| 亚洲综合日韩| 亚洲精选视频在线| 亚洲福利视频二区| 亚洲激情视频网| 有码中文亚洲精品| 好看的av在线不卡观看| 欧美午夜不卡视频| 欧美激情中文字幕一区二区| 欧美另类一区二区三区| 欧美成年人视频网站| 亚洲午夜久久久| 欧美制服丝袜第一页| 亚洲免费影视| 久久久久国产精品一区二区| 久久人人超碰| 久久久综合网站| 欧美日韩国产专区| 欧美日韩国产91| 国产一区二区0| 国产综合色产在线精品| 国产精品久久久久久久久久妞妞| 国产婷婷精品| 国产日韩欧美综合精品| 亚洲国产精品视频|