發布日期:2022-10-09 點擊率:86
產品詳情
MP901空氣質量氣體傳感器采用多層厚膜制造工藝,在微型Al2O3陶瓷基片的兩面分別制作加熱器和金屬氧化物半導體氣敏層,封裝在金屬殼體內。當環境空氣中有被檢測氣體存在時傳感器電導率發生變化,該氣體的濃度越高,氣體傳感器的電導率就越高。采用簡單的電路即可將這種電導率的變化轉換為與氣體濃度對應的輸出信號。
傳感器特點
本品對酒精、煙霧靈敏度高;具有響應恢復快、低功耗、檢測電路簡單、穩定性好、壽命長等優點。
主要應用
該氣體傳感器可廣泛應用于家庭環境及辦公室有害氣體檢測、 自動排風裝置、空氣清新機等.
技術指標
產品型號
MP901
產品類型
平面半導體氣體傳感器
標準封裝
金屬封裝
檢測氣體
酒精、煙霧、甲醛、甲苯、苯、丙酮、打火機氣、油漆等
檢測濃度
1~50ppm
標準電路條件
回路電壓
VC/VH
5.0V±0.1V DC
負載電阻
RL
可調
標準測試條件下氣敏元件特性
加熱電阻
RH
95ω±10ω(室溫)
加熱功耗
PH
≤300mW
敏感體
電 阻
RS
1Kω~30Kω(in 10ppm 酒精)
靈敏度
S
Rs(in air)/Rs(in 10ppm酒精)≥5
濃度斜率
α
≤0.6(R50ppm/R5ppm酒精)
標準測試條件
溫度、濕度
20℃±2℃;65%±5%RH
標準測試電路
VC/VH :5.0V±0.1V
預熱時間
不少于48小時
注:產品參數如有變動,恕不另行通知
氣體傳感器是氣體檢測系統的核心,通常安裝在探測頭內。從本質上講,氣體傳感器是一種將某種氣體體積分數轉化成對應電信號的轉換器。探測頭通過氣體傳感器對氣體樣品進行調理,通常包括濾除雜質和干擾氣體、干燥或制冷處理、樣品抽吸,甚至對樣品進行化學處理,以便化學傳感器進行更快速的測量。
氣體種類繁多,性質各異,因此,氣體傳感器種類也很多。按待檢氣體性質可分為:用于檢測易燃易爆氣體的傳感器,如氫氣、一氧化碳、瓦斯、汽油揮發氣等;用于檢測有毒氣體的傳感器,如氯氣、硫化氫、砷烷等;用于檢測工業過程氣體的傳感器,如煉鋼爐中的氧氣、熱處理爐中的二氧化碳;用于檢測大氣污染的傳感器,如形成酸雨的NOx、CH4、O3,家庭污染如甲醛等。按氣體傳感器的結構還可分為干式和濕式兩類;按傳感器的輸出可分為電阻式和費電阻式兩類;按檢測院里可分為電化學法、電氣法、光學法、化學法幾類。
半導體氣體傳感器
半導體氣體傳感器可分為電阻型和非電阻型(結型、MOSFET型、電容型)。電阻型氣敏器件的原理是氣體分子引起敏感材料電阻的變化;非電阻型氣敏器件主要有M()s二極管和結型二極管以及場效應管(M()SFET),它利用了敏感氣體會改變MOSFET開啟電壓的原理,其原理結構與ISFET離子敏傳感器件相同。
電阻型半導體氣體傳感器
作用原理
人們已經發現SnO2、ZnO、Fe2O3、Cr2O3、MgO、NiO2等材料都存在氣敏效應。用這些金屬氧化物制成的氣敏薄膜是一種阻抗器件,氣體分子和敏感膜之間能交換離子,發生還原反應,引起敏感膜電阻的變化。作為傳感器還要求這種反應必須是可逆的,即為了消除氣體分子還必須發生一次氧化反應。傳感器內的加熱器有助于氧化反應進程。SnO2薄膜氣敏器件因具有良好的穩定性、能在較低的溫度下工作、檢驗氣體種類多、工藝成熟等優點,是目前的主流產品。此外,Fe2O3也是目前廣泛應用和研究的材料。除了傳統的SnO、SnO2和Fe2O3三大類外,目前又研究開發了一批新型材料,包括單一金屬氧化物材料、復合金屬氧化物材料以及混合金屬氧化物材料。這些新型材料的研究和開發,大大提高了氣體傳感器的特性和應用范圍。
選擇性是氣體傳感器的關鍵性能。如SnO2薄膜對多種氣體都敏感,如何提高SnO2氣敏器件的選擇性和靈敏度一直是研究的重點。主要措施有:在基體材料中加入不同的貴金屬或金屬氧化物催化劑,設置合適的工作溫度,利用過濾設備或透氣膜外過濾敏感氣體。在SnO2材料內摻雜是改善傳感器選擇性的主要方法,添加Pt、Pd、Ir等貴金屬不僅能有效地提高元件的靈敏度和響應時間,而且,催化劑不同,導致不同的吸附傾向,從而改善選擇性。例如在SnO2氣敏材料中摻雜貴金屬Pt、Pd、Au可以提高對CH4的靈敏度,摻雜Ir可降低對CH4的靈敏度,摻雜Pt、Au提高對H2的靈敏度,摻雜Pd降低對H2的靈敏度。
工作溫度對傳感器的靈敏度有影響。下圖左圖為SnO2氣敏器件對各種氣體溫度的電阻特性曲線。由圖可見,器件在不同溫度下對各種氣體的靈敏度不同,利用這一特性可以識別氣體種類。
制備工藝對SnO2的氣敏特性也有很大的影響。如在SnO2中添加ThO2,改變燒結溫度和加熱溫度就可以產生不同的氣敏效應。按質量計算,在SnO2中加入3~5%的ThO2,5%的Sm2.在600℃的H2氣氛中燒結,制成厚膜器件,工作溫度為400℃。則可作為CO檢測器件。上圖右圖是燒結溫度為600℃時氣敏器件的特性。可看出,工作溫度在170~200℃范圍內,對H2的靈敏度曲線呈拋物線,而對CO改變工作溫度則影響不大,因此,利用器件這一特性可以檢測H2。而燒結溫度為400℃制成的器件,工作溫度為200℃時,對H2、CO的靈敏度曲線形狀都近似呈直線,但對CO的靈敏度要高得多,可以制成對CO敏感的氣體傳感器。
結構及參數
SnO2電阻型氣敏器件通常采用燒結工藝。以多孔SnO2陶瓷為基底材料,再添加不同的其他物質,用制陶工藝燒結而成,燒結時埋入加熱電阻絲和測量電極。此外,也有用蒸發和濺射等工藝制成的薄膜器件和多層膜器件,這類器件靈敏度高,動態特性好。還有采用絲網印刷工藝制成的厚膜器件和混合膜器件,這類器件具有集成度高,組裝容易,使用方便,便于批量生產的優點。
下圖是電阻型氣體傳感器的一種典型結構,它主要南SnO2敏感元件、加熱器、電極引線、底座及不銹鋼網罩組成。這種傳感器結構簡單,使用方便,可以檢測還原性氣體、可燃性氣體、蒸氣等。
電阻型氣體傳感器的主要特性參數有:
1、固有電阻R0和工作電阻Rs
固有電阻Ro又稱正常電阻,表示氣體傳感器在正常空氣條件下的阻值。工作電阻Rs表示氣體傳感器在一定濃度被測氣體中的阻值。
2、靈敏度S
通常用S=Rs/R0表示,有時也用兩種不同濃度C1、C2)檢測氣體中元件阻值之比來表示:S=Rs(C2)/R0(C1)。
3、響應時間T1
反映傳感器的動態特性,定義為傳感器阻值從接觸一定濃度的氣體起到該濃度下的穩定值所需時間。也常用達到該濃度下電阻值變化率的63%時的時問來表示。
4、恢復時問T2
又稱脫附時間。反映傳感器的動態特性,定義為傳感器從脫離檢測氣體起,直到傳感器電阻值恢復至正常空氣條件下的阻值,這段時間稱為恢復時間。
5、加熱電阻RH和加熱功率PH
RH為傳感器提供工作溫度的電熱絲阻值,PH為保持正常工作溫度所需要的加熱功率。
電阻型氣體傳感器具有成本低廉、制造簡單、靈敏度高、響應速度快、壽命長、對濕度敏感低和電路簡單等優點。不足之處是必須工作于高溫下,對氣體的選擇性較差,元件參數分散,穩定性不夠理想,功率要求高,當探測氣體中混有硫化物時,容易中毒。
非電阻型半導體氣體傳感器
非電阻型也是一類較為常見的半導體氣敏器件,這類器件使用方便,無需設置工作溫度,易于集成化,得到了廣泛應用。主要有結型和MOSFET型兩種。
結型氣敏器件
結型氣敏傳感器件又稱氣敏二極管,這類氣敏器件是利用氣體改變二極管的整流特性來工作的。其結構如下圖左圖所示。它的原理是:貴金屬Pd對氫氣具有選擇性,它與半導體接觸形成接觸勢壘。當二極管加正向偏壓時,從半導體流向金屬的電子將增加,因此正向是導通的。當加負向偏壓時,載流子基本沒有變化,這是肖特基二極管的整流特性。在檢測氣氛中,由于對氫氣的吸附作用,貴金屬的功函數改變,接觸勢壘減弱.導致載流子增多,正向電流增加,二極管的整流特性曲線會發生左移。下圖右圖為Pd—TiO2氣敏二極管在不同濃度H2的空氣中的特性曲線。因此,通過測量二極管的正向電流可以檢測氫氣濃度。
MOSFET型氣敏器件
氣敏二極管的特性曲線左移可以看作二極管導通電壓發生改變,這一特性如果發生在場效應管的柵極,將使場效應管的閾值電壓UT改變。利用這一原理可以制成MOSFET型氣敏器件。
氫氣敏MOSFET是一種最典型的氣敏器件,它用金屬鈀(Pd)制成鈀柵。在含有氫氣的氣氛中,由于鈀的催化作用,氫氣分子分解成氫原子擴散到鈀與二氧化硅的界面,最終導致MOSFET的閾值電壓UT發生變化。使用時常將柵漏短接,可以保證MOSFET工作在飽和區,此時的漏極電流ID=β(UGS—UT)2,利用這一電路可以測出氫氣的濃度。
氫氣敏MOSFET的特點有:
1、靈敏度
當氫氣濃度較低時,氫氣敏MOSFET靈敏度很高,1ppm氫氣濃度變化,△UT的值可達到10mV,當氫氣濃度較高時,傳感器的靈敏度會降低。
2、對氣體選擇性
鈀原子間的“空隙”恰好能讓氫原子通過,因此,鈀柵只允許氫氣通過,有很好的選擇性。
3、響應時間
這種器件的響應時間受溫度、氫氣濃度的影響,一般溫度越高,氫氣濃度越高,響應越快,常溫下的響應時間為幾十秒。
4、穩定性
實際應用中,存在UT隨時間漂移的特性,為此,采用在HCl氣氛中生長一層SiO2絕緣層,可以顯著改善UT的漂移。
除氫氣外,其他氣體不能通過鈀柵,制作其他氣體的Pd—MOSFET氣敏傳感器要采用一定措施,如制作CO敏MOSFET時要在鈀柵上制作約20nm的小孔,就可以允許CO氣體通過。另外,由于Pd—MOSFET對氫氣有較高的靈敏度,而對CO的靈敏度卻較低,為此可在鈀柵上蒸發一層厚約20nm的鋁作保護層,阻止氫氣通過。鈀對氨氣分解反應的催化作用較弱,為此,要先在SiO2絕緣層上沉淀一層活性金屬,如Pt、Ir、La等。再制作鈀柵,可制成氨氣敏MOSFET。
固體電解質氣體傳感器
固體電解質是一種具有與電解質水溶液相同的離子導電特性的固態物質,當用作氣體傳感器時,它是一種電池。它無需使氣體經過透氣膜溶于電解液中,可以避免溶液蒸發和電極消耗等問題。由于這種傳感器電導率高,靈敏度和選擇性好,幾乎在石化、環保、礦業、食品等各個領域都得到了廣泛的應用,其重要性僅次子金屬—氧化物一半導體氣體傳感器。
固體電解質氧氣傳感器原理
同體電解質在高溫下才會有明顯的導電性。氧化鋯(ZrO2)是典型的氣體傳感器的材料。純正的氧化鋯在常溫下是單斜晶結構,當溫度升到1000℃左右時就會發生同質異晶轉變,由單斜晶結構變為多晶結構,并伴隨體積收縮和吸熱反應,因此是不穩定結構。在ZrO2中摻入穩定劑如:堿土氧化鈣CaO或稀土氧化釔Y2O3,使其成為穩定的熒石立方晶體,穩定程度與穩定劑的濃度有關。ZrO2加入穩定劑后在l800℃氣氛下燒結,其中一部分鋯離子就會被鈣離子替代,生成(ZrO·CaO)。由于Ca2+是正二價離子,Zr4+是正四價離子,為繼續保持電中性,會在晶體內產生氧離子O2-空穴,這是(ZrO·CaO)在高溫下傳遞氧離子的原因,結果是(ZrO·CaO)在300~800℃成為氧離子的導體。但要真正能夠傳遞氧離子還必須在固體電解質兩邊有不同的氧分壓(氧位差),形成所渭的濃差電池。其結構原理如圖所示,兩邊是多孔的貴金屬電極,與中間致密的ZrO·CaO材料制成夾層結構。
設電極兩邊的氧分壓分別為PO2(1)、PO2(2),在兩電極發生如下反應:
(+)極:PO2(2),2O2-→O2+4e
(-)極:PO1(1),O2+4e→2O2-
上述反應的電動勢用能斯特方程表示:
可見,在一定溫度下,固定PO2(1),有上式可求出傳感器(+)極待測氧氣的濃度。
固定PO2(1)實際上是(-)極形成一個電位固定的電極,即參比電極,有氣體參比電極和共存相參比電極兩種。氣體參比電極可以是空氣或其他混合氣體,如:H2一H2O,CO一CO2也能形成固定的PO2(1)。共存相參比電極是指金屬-金屬氧化物、低價金屬氧化物-高價金屬氧化物的混合粉末(固相),這些混合物與氧氣(氣相)混合發生氧化反應能形成同定的氧壓,因此也能作為參比電極。
除了測氧外,應用β一Al2O3、碳酸鹽、NASICON等固體電解質傳感器,還可用來測CO、SO2、NH4等氣體。近年來還出現了銻酸、La3F等可在低溫下使用的氣體傳感器,并可用于檢測正離子。
紅外氣體傳感器
作用原理
由不同原子構成的分子會有獨特的振動、轉動頻率,當其受到相同頻率的紅外線照射時,就會發生紅外吸收,從而引起紅外光強的變化,通過測量紅外線強度的變化就可以測得氣體濃度;需要說明的是振動、轉動是兩種不同的運動形態,這兩種運動形態會對應不同的紅外吸收峰,振動和轉動本身也有多樣性;因此一般情況下一種氣體分子會有多個紅外吸收峰;根據單一的紅外吸收峰位置只能判定氣體分子中有什么基團,精確判定氣體種類需要看氣體在中紅外區所有的吸收峰位置即氣體的紅外吸收指紋。但在已知環境條件下,根據單一紅外吸收峰的位置可以大致判定氣體的種類。由于在零下273攝氏度即絕對零度以上的一切物質都會產生紅外幅射,紅外幅射與溫度正相關,因此,同催化元件一樣,為消除環境溫度變化引起的紅外幅射的變化,紅外氣體傳感器中會由一對紅外探測器構成。
一個完整的紅外氣體傳感器由紅外光源、光學腔體、紅外探測器和信號調理電路構成。
為什么紅外氣體傳感器不能測量氧氣、氫氣、氮氣等由相同原子構成的氣體分子?
月亮和地球、地球和太陽靠萬有引力連接,分子內部原子間靠化學鍵連接。如果二者是理想球體而且沒有其它萬有引力干擾則地球軌道將是圓的,實際上上面兩個條件都不成立,因此其軌道是橢圓的,也就是地球和太陽之間的距離不停地在短半徑和長半徑之間轉換,即振動,只是振動周期長達一年,在這個過程中,地球處于短半徑點和長半徑點時,它和太陽之間的引力是不同的,即能量級別不同。在分子內部原子間靠化學鍵連接,原子間的空間距離、角度、方向由于電子分布的不均衡而不停發生變化,即振動、轉動,而且不同的分子會有獨特的振動、轉動頻率,當遇到相同頻率的紅外線照射時會產生諧振、原子間距離和電子分布發生變化即偶極距發生變化,紅外吸收就是這樣產生的(紫外吸收同理)。
以上內容中包含紅外吸收的兩個基本條件:諧振、偶極距變化。這兩個條件同時滿足才能產生紅外吸收。
氧氣、氫氣、氮氣等由同一種原子構成的分子為什么沒有紅外吸收峰:兩個基本條件一是氣體分子振動頻率與照射的紅外線頻率相同,二是偶極距變化。不難理解,第一個條件容易滿足,第二個條件無可能性。
相同原子構成的分子正負電荷中心完全重疊,即偶極距為零,其結果是電子在分子中的分布是均衡的,以紅外光本身的低能量密度特征,其照射不會改變這種均衡,更不可能使分子電離,即不會導致能量變化。而不同原子構成的分子:以水(蒸氣)分子為例,分子中電子的分布偏向氧這端,即微觀上水分子中氫那一端呈正電性,氧那一端呈負電性,正負電荷中心是不重疊的,即偶極矩不為零。這是因為氧吸引電子的能力比氫強的緣故。
在與水分子振動、轉動頻率相同的紅外線照射時,會使電子在水分子中的分布更偏向氧一端,導致氫和氧的平均距離變短,即偶極距變短,能量變高,即水分子受到紅外照射時會從低能級躍遷到高能級,紅外吸收就是這樣產生的。可以這樣去簡單理解:紅外線與相同原子組成的分子相遇時,由于相同原子組成的分子是理想的彈性球體,兩者的相互作用是完全彈性碰撞,只有能量交換,沒有能量轉移。不同原子組成的分子與紅外線相互作用則有能量轉移。因此,紅外吸收原理不能測相同原子構成的分子。
非色散紅外吸收氣體傳感器
非色散:白光通過三棱鏡會被分為七色光即赤、橙、黃、綠、青、藍、紫。這個三棱鏡就是一個分光系統,能把7色光分開。有分光系統的光學系統即色散型光學系統,無分光系統的光學系統即非色散性。非色散系統簡易、可靠、小巧、廉價。平時我們感受到的白光、紫外、紅外光都是不同頻率、波長混合成的光;而單頻率、單波長的光即單色光。前面講到只有紅外線的頻率和氣體分子振動、轉動頻率相同時才會產生紅外吸收,理論上在設計氣體傳感器時,我們希望用單色光去照射氣體或者照射后我們用設置光柵(濾光片)的辦法獲得單色光。
非色散紅外氣體傳感器通常由光源、光學腔體、濾光片(光柵)、探測器和信號調理電路構成,在傳感器中濾光片和探測器是一體的。
紅外氣體傳感器優點:
1、除了相同原子組成的氣體,所有氣體都可以測。
2、全量程。
3、傳感過程本身不會干擾傳感。
缺點:
1、昂貴。紅外氣體傳感器本質上是紅外幅射導致探測器溫度變化進而是電性能變化的溫度傳感器,傳感過程復雜。要求系統有如下特征:光源必須有穩定的紅外幅射;光學腔體物理化學性質穩定;濾光片及紅外探測器穩定。這些問題,合理的工藝技術本身能較好的解決,但是制造成本高,導致價格昂貴。
2、在普通的以寬頻紅外光源加濾光片加探測器設計中,濾光片本身不能實現理想的選擇性濾光,因此干擾尤其是水的干擾一直存在。選擇性的問題深層原因在于很多不同的氣體分子會有相同的化學鍵,即有相近甚至重疊的紅外吸收。
3、粉塵、背景幅射、強吸附及氣、液、固易發生轉換的檢測對象都會對檢測結果造成影響。
催化燃燒式氣體傳感器
作用原理
一般由線徑15um或20um或30um的高純度鉑線圈并在其外包裹載體催化劑形式球體,在一定的溫度條件下,當可燃性氣體與上述球體接觸時會與其表面的吸附氧發生劇烈的無焰燃燒反應,反應釋放的熱量導致鉑線圈溫度變化,溫度變化又導致鉑線圈電阻發生變化,測量電阻變化就可以測到氣體濃度。
因此與其說催化元件是氣體傳感器不如說他是個溫度傳感器,為克服環境溫度變化帶來的干擾,催化元件會成對構成一支完整的元件,這一對中一個對氣體有反應,另一個對氣體無反應,而只對環境溫度有反應,這樣兩支元件相互對沖就可以消除環境溫度變化帶來的干擾。
和半導體元件不同,催化元件傳感過程較為復雜,前者是氣體與傳感器接觸后發生的化學反應直接導致傳感器電阻即電信號的變化,后者則是氣體在催化元件上發生的化學反應首先導致的結果是傳感器載體表面及載體內部的溫度變化,載體的溫度變化經過熱傳遞最終導致鉑線圈電阻的變化,完成傳感的全過程。
存在的問題
傳感過程復雜,導致問題產生的幾率就大一些。
1、對長分子鏈的有機物以及不飽和烴,對半導體來說,不完全反應導致的積炭只會對反應過程產生影響,而不會對電子傳輸產生大的影響,而對催化來講,炭的存在不僅影響反應過程,更會對熱傳遞產生劇烈影響,結果是反應產生的熱量向傳感器內部傳遞效率變低了,熱量大都散失掉了,最終是,同樣的氣體濃度,釋放同樣的熱,由于炭的存在,導致傳感器:溫度只有很小的變化,即靈敏度變得很低。
2、因為需要熱傳遞,為了保證熱效率,反應必須在瞬間完成,即要求有極高的反應效率,就需要有大量的納米級的催化劑以及納米級的孔,這樣的特征有利于傳感也有利于中毒。
3、催化元件的線性是由兩個因素決定的a、溫度傳感材料pt線圈的電阻~溫度特性是線性的。b、爆炸下限以內反應放熱和氣體濃度是線性的。因此,兩個因素任一發生變化,就會導致傳感器線性變化。實際上,鉑線圈會持續升華變細即導阻變大;反應釋放的熱量與濃度的線性關系只在氣體濃度為爆炸下限以內時才成立。
未來發展
催化元件的未來主要取決于工藝技術的進步:
1、結構改進,解決的問題是震動引起的漂移。
2、過濾層改進,解決的問題是中毒。
3、開發新材料改善積碳。
4、制造過程對設計實現的保障如避免形變。
5、MEMS化。需要說明的是,器件結構、封裝、制造工藝的改進不僅會改善元件的綜合性能,也會引發新的應用。和半導體相比,催化元件MEMS化的困境在于如何在小的表面積下有更高的催化效率、熱效率。
6、催化元件的應用定位會更精準專一。
7,催化元件不會被淘汰。
電化學傳感器
電化學就是研究電學和化學行為之間關系的學科。這個學科最重要的應用是電能與化學能之間的高效轉換和大功率密度存儲技術。我們知道本質上傳感器是一種能量轉換裝置,如壓力傳感器就是把機械能轉換為電能的裝置。因此,很容易理解,電化學氣體傳感器就是一個電池,叫氣體燃料電池。
最常見的電池,把一堆可以導電的化學物質裝起來,插入兩個不同材料的電極,用導線連接就會有電產生。以鉛酸蓄電池為例,硫酸水溶液就是導電的化學物質,把鉛放進其中,在鉛和硫酸接觸的地方(界面)會產生電,把氧化鉛放進去,界面也會有電,兩個界面電量有差異,即有電壓,用導線連起來電子就會從鉛流到氧化鉛,鉛就變成了氧化鉛,氧化鉛變成了氧化亞鉛。電量和化學量及反應過程相關聯。
這里最重要的概念:一是把一個導體插入導電的化學物質中界面會產生電位,同一種物質中插入不同的導體產生不同的電位。二是不同的電位相連接,在界面會發生反應。三是導電回路由電池和外接導線兩部分構成。電池外部在連接導線內是電子,電池內是離子。即導電過程由電子移動和離子移動共同完成。
電化學CO氣體傳感器是一個化學電池即CO燃料電池。其中: CO是提供電子的一極(工作電極),氧氣是獲得電子的一極,硫酸水溶液是電解質。和鉛酸蓄電池最大的不同是電極材料不同,電化學氣體傳感器(co)電極材料是氣體,鉛酸蓄電池是固體。電化學氣體傳感器的電極叫氣體電極。電化學CO氣體傳感器中,工作電極CO作為供電子的一極,只有CO和硫酸水溶液觸是無法進行的電子釋放、收集和傳導的。其一CO完成提供電子的過程需要條件,即在電催化條件下降低CO提供電子的難度。實踐中這個條件由多孔鉑電極(或其它電催化導電電極)提供。其二,CO提供的電子需要導體收集后傳導,也由多孔鉑電極完成。
同理,作為對電極的氧氣電極亦需要有多孔鉑電極協助獲得電子。鉑電極實際上是反應平臺。電化學傳感器傳感原理雖然簡單,但是實現可靠精確的傳感卻很難:其一需要鉑電極有穩定的多孔結構,孔的數量足夠多,硫酸水溶液進到孔里,CO (或氧氣)也能進到孔里,在氣(CO)-固(pt)-液(硫酸水溶液中的水)共同接觸的位置即三相界面完成電子提供。因此,三相界面如何在硫酸長期浸泡、電化學反應沖擊、電泳驅動下保持穩定,是可靠精確傳感的核心。其二,硫酸水溶液要穩定,不揮發,不吸水、不泄漏。任何硫酸水溶液的質量變化都會導致傳感器內部壓力的變化,進而引起三相界面的變化。其三、由封裝、材料物理特性決定的電極和硫酸水溶液接觸應力要穩定不變。
目前電化學傳感器的主要問題基本源于上述因素。電化學傳感器最核心的技術及工藝之一是如何構建孔的物理結構合理穩定可靠的電極,它和靈敏度、響應恢復、壽命、溫度特性密切相關。其二是封裝。電化學傳感器存在的問題如干燥條件下的失水失活、高濕條件下的吸水漏液,長期接觸被測氣體導致的中毒失活,電極孔結構解體導致的失活。體現在性能上是漏液、壽命短(相比其它原理)、體積大。體現在制造上表現為設計、工藝復雜、制造成本昂貴。
電化學傳感器的未來:明確的方向是電解液室溫固態化并以此為基礎實現MEMS化。實現固態化和MEMS化的電化學傳感器不僅能夠克服包括制造在內的大部分問題,而且可以激發新的應用,為企業帶來新的增長。此時的電化學傳感器將是高度一體化的,易集成的、小巧的電子系統。但是,這樣的結果仍然不能克服高濃度或被測氣體長期與傳感器接觸導致的傳感器性能變化。
PID——光離子化檢測器
PID由紫外光源和氣室構成。紫外發光原理與日光燈管相同,只是頻率高,能量大。被測氣體到達氣室后,被紫外燈發射的紫外光電離產生電荷流,氣體濃度和電荷流的大小正相關,測量電荷流即可測得氣體濃度。
特殊氣體:物理形態多變、化學過程及反應生成物復雜多樣。包括無機氣體如氨氣。有機氣體如甲苯等。
前面介紹的各種氣體傳感器,對復雜氣體的檢測面臨巨大挑戰。如:對有機蒸氣的檢測,紅外吸收原理面臨著很難克服的困難:a、有機蒸氣由于分子量大的緣故,特征吸收波長較長,紅外吸收后能量變化小,通常靈敏度會很低。b、長分子鏈的有機蒸氣易吸附,會粘附在探測器上,破壞光傳輸。c、不能實現對voc總量的檢測。紅外系統若實現總量評價,則需要全光譜響應的濾光片、探測器和全光譜紅外光源,這樣的要求不僅難實現,即使實現,在全光譜范圍內,無機氣體、水的干擾將順理成章。而化學傳感器中半導體易被無機氣體、溫、濕度干擾,漂移,濃度分辯率低,雖然其檢測范圍寬、覆蓋氣體種類多,但仍僅適合在低端應用。在這樣的背景下,在工業現場voc檢測時PlD是較好的選擇。
相對其它傳感器plD最大的特點是只對很少的無機氣體,如氨氣、磷化氫等敏感。原因在于大部分的無機氣體有很高的電離能(大于11.7ev)。目前plD燈最高紫外幅射能量僅為11.7ev。因此,在石油化工園區,PiD的響應可以認為是voc的響應。
PID工作原理
1、在真空玻璃腔內充入高純度稀有氣體如氬氣、氪氣。
2、用紫外透光片氟化鎂單晶將玻璃腔體密封,在此氟化鎂晶體對紫外光透明。
3、在玻璃腔外壁套上電極。
4、在氟化鎂窗口加上電極和電場,做為被測氣體氣室,這就是一個完整的可電離VOC的紫外燈。工作時在玻璃腔外加上高頻電場,紫外燈內的稀有氣體被外加電場電離出電子和離子,電子和離子復合時紫外光的形式向外幅射能量。紫外光穿過氟化鎂窗口到達氣室,氣室內被測氣體被紫外光電離產生電子和離子,電荷在電場作用下產生電流,就可以測到了。
PlD穩定工作需要:
1、PID必須幅射足夠的能量才能電離被測氣體;
2、產生紫外光的高頻電場必須是穩定的。
3、玻璃腔體內不能有雜質氣體,雜質氣體會導致附加電離,影響紫外發光效率。
4、紫外光譜是穩定、均勻的。
5、紫外光到達氣室的傳輸是穩定、均勻并不與構成氣室的金屬電極材料相互作用而產生重金屬沉積,重金屬在紫外幅射窗口沉積會阻擋紫外到達氣室。
這就要求:紫外燈充入的發光物質必須是氣體才能均勻發光并傳輸。腔體內不能有雜質氣體,以防止附加電離等。這些要求決定了發光氣體的選擇只能是稀有氣體。窗口材料則必須對紫外透明并具有穩定的理化性質,事實上紫外窗口材料的選擇是極其有限的。這些限至條件最終也決定了PID應用的局限性。
為什么目前的PID不能測丙烷、乙烷、甲烷和大部分無機物
PID的本質是使被測物質電離后測電荷流,電離需要能量。目前的PID紫外幅射能量最常見的是8.3ev、9.8ev、10.6ev。而電離甲烷需要的能量為12.6ev,乙烷為11.56ev、丙烷為10.95ev、二氧化碳為13ev等。事實上,人們很想開發出能量更高的PID,但限至條件在于稀有氣體的種類極其有限,紫外波長(能量)是由稀有氣體本身的電子能級決定的,人類無法改變;另一個限至條件是特定波長的紫外光透光窗口材料,能透什么樣波長的紫外光取決于窗口材料的晶格常數,在目前的材料體系中選擇也極有限。人們雖然開發出11.7ev的發光體,但適合的窗口材料只有氟化鋰(LiF),而氟化鋰極易吸水,導致11.7ev的PID壽命只有兩個月。即目前的紫外燈由于輸出能量的限制,仍不能檢測甲烷等有較高電離能的物質。
PID為什么沒有選擇性?
如果我們選擇的PID的紫外幅射能量是10.6ev,就意味著被測環境中電離能小于10.6ev的所有氣體分子都會被電離,我們測到的電荷流是所有被電離氣體的電荷流的和,而不是某種氣體的電荷流。PID無選擇性是由此決定的。
PID在工作時,氣室內被電離的物質相遇時會復合還原,長鏈分子、灰塵等會沉積在窗口表面,除此,傳感器工作時產生的離子流轟擊氣室電極也會使重金屬沉積在窗口表面,這顯然會影響紫外光透過,而導致零點漂移、靈敏度降低,影響檢測結果。實際上除了PiD燈的制備技術、氣室設計,PID燈紫外透過窗口的清洗技術也是核心技術之一。
PID的未來
1、PiD作為理想的非放射性離子源會永遠存在;
2、提高PID燈內充氣前的真空度以及填充氣體純度以提高發光效率和發光穩定性;
3、開發新的窗口材料及加工精度以改善透光率、出射光均勻性、封裝質量、以及穩定性和壽命;
4、預防色散導致窗口的重金屬沉積,延長壽命;
5、防止大分子有機物、小顆粒物沉積的窗口清潔技術;
6、輸出能量更高的長壽命PID燈的開發;
7、小體積。
氣體傳感器的發展方向
氣體傳感器的研究涉及面廣、難度大,屬于多學科交叉的研究內容。要切實提高傳感器各方面的性能指標需要多學科、多領域研究工作者的協同合作。氣敏材料的開發和根據不同原理進行傳感器結構的合理設計一直受到研究人員的關注。未來氣體傳感器的發展也將圍繞這兩方面展開工作。具體表現如下:
氣敏材料的進一步開發一方面尋找新的添加劑對已開發的氣敏材料性能進行進一步提高;另一方面充分利用納米、薄膜等新材料制備技術尋找性能更加優越的氣敏材料。
新型氣體傳感器的開發和設計根據氣體與氣敏材料可能產生的不同效應設計出新型氣體傳感器。近年來表面聲波氣體傳感器、光學式氣體傳感器、石英振子式氣體傳感器等新型傳感器的開發成功進一步開闊了設計者的視野。目前仿生氣體傳感器也在研究中。
氣體傳感器傳感機理的進一步研究新的氣敏材料和新型傳感器層出不窮,很有必要在理論上對它們的傳感機理進行深度的研究。只有機理明確了,下一步的工作才會少走彎路。
氣體傳感器的智能化生產和生活日新月異的發展對氣體傳感器提出了更高的要求,氣體傳感器智能化是其發展的必由之路。智能氣體傳感器將在充分利用微機械與微電子技術、計算機技術、信號處理技術、電路與系統、傳感技術、神經網絡技術、模糊理論等多學科綜合技術的基礎上得到發展。
仿生氣體傳感器的迅速發展警犬的鼻子就是一種靈敏度和選擇性都非常好的理想氣敏傳感器,結合仿生學和傳感器技術研究類似狗鼻子的"電子鼻"將是氣體傳感器發展的重要方向之一。
制造業的未來是智能化,智能化的基礎就是傳感器;互聯網的方向是物聯網,物聯網的基石也是傳感器;
《傳感器技術》匯編了一套各種傳感器的基礎知識,介紹了各種傳感器的原理。
責任編輯:PSY
原文標題:深度解讀各類氣體傳感器
文章出處:【微信公眾號:傳感器技術】歡迎添加關注!文章轉載請注明出處。
摘要:為了在測試的過程中測量納米材料氣體傳感器變化的電阻信號,針對高靈敏度的納米材料氣體傳感器,設計了一種寬動態范圍的快速采樣接口電路,基于積分電路的原理,將流經傳感器的電流轉換成一定脈寬的方波信號,單片機捕獲脈沖時間并換算成傳感器電阻值。電路在1kΩ~500MΩ測量范圍內的最大線性誤差為5%,能夠應用于氣體傳感器的測試和標定、手持氣體檢測設備以及電阻測量等領域。
關鍵詞:電阻型氣體傳感器;接口電路;積分電路;寬電阻測量范圍;單片機
0引言
目前,氣體傳感器在社會發展的各個領域有著越來越廣泛的應用,如家庭安全系統、食品安全檢測、醫療設備以及環境污染控制等都離不開氣體傳感器。相較于普通的氣體傳感器,納米材料制備的氣體傳感器具有較高的靈敏度、優異的氣體選擇性、較低的工作溫度和良好的穩定性,適用于檢測氣體環境的細微變化。其中,電阻型氣體傳感器的輸出量為電阻值,高靈敏度導致傳感器的電阻具有很大的變化范圍[1]。所以,納米材料氣體傳感器能否廣泛應用,關鍵在于信號采集電路能否準確地和連續地檢測出傳感器信號的變化。傳統的接口電路通常使用可以切換檔位的恒流源或恒壓源連接傳感器,以滿足傳感器阻值的變化對不同量程的要求[2],但是檔位的切換會引入誤差并造成各通道的一致性變差,同時降低了測量速度,這些都是傳感器測試中亟待解決的問題。
本文針對納米材料氣體傳感器在實際應用中的特點,設計并實現了一種基于積分電路的傳感器接口電路,通過將流經傳感器的電流進行積分的方式把電阻值轉換為一定時間的脈沖信號,再使用STM32單片機的定時器對脈沖信號寬度進行捕獲。這種將大電阻在時間尺度上壓縮的方法避免了測量變化電阻時的量程切換和模數轉換,提高了測量精度和響應速度。測試結果表明,電路的動態測量范圍和頻率都能夠滿足氣體傳感器需要的技術指標。
1實現方法
1.1傳感器測量原理
當電阻型傳感器暴露在目標氣體中時,敏感材料的表面吸附氧與目標分子發生反應,導致敏感材料的電導率、伏安特性以及表面電位變化,宏觀上體現為傳感器的電阻值會發生相應的變化[3]。為電阻型氣體傳感器的電路模型,由于加熱電極的影響,電阻型傳感器需要考慮寄生電容效應,器件通常被視為寄生電容Cp并且與主要的電阻元件Rs并聯。如果加在傳感器兩端的電壓恒定,則流過的電流也為恒定的,所以,并聯的寄生電容在測量中可以忽略不計。已知恒壓源Vcc和信號調理電路的輸入電壓Vis,傳感器電阻值R
1.2積分電路設計
信號調理電路通過積分的方式記錄流經傳感器的電流Is,在每個測量周期中,電路會產生一個脈沖,而脈沖的寬度代表電路對傳感器電流Is的積分時間,由于電路采樣速率遠大于傳感器電流的變化速率,所以可以假定在每個測量周期中Is恒定不變。如圖2所示為積分電路的原理圖,由于積分器Ints同相端電壓Vis小于傳感器供電電壓Vcc,則電流Is流入積分器反相端,經過反饋電容Cs后輸出電壓Vs將由Vis開始以斜率αs的速度下降。Intt的同相端電壓Vit小于Vis,反相端經由電阻Rt連接到地,則電流從反相端流出,積分器Intt的輸出電壓Vt由Vit開始以斜率αt的速度上升[4]。
比較器Comp的反向端連接傳感器的積分電壓Vs,同相端連接參考電壓Vt,那么在積分開始時,由于Vis大于Vit,所以比較器輸出電壓為低電平。隨著積分過程的進行,當傳感器積分電壓Vs等于參考電壓Vt時,下一刻比較器將輸出高電平。單片機的定時器捕獲這個高電平信號后通過I/O口控制電子開關SWs和SWt對積分電路進行復位,電路復位的過程就是將反饋電容放電,使兩個積分器的輸出電壓Vs和Vt分別等于Vis和Vit。考慮到電容兩端電壓不能突變,所以復位信號需要保持一段時間,根據運放的壓擺率SR,單片機輸出的復位信號Vres保持的最短時間為Vcc/SR[4]。復位完成后開關斷開,電路開始下一個周期的測量。
1.3電路原理分析
積分電路中兩個積分器分別同相和反相積分,當Vs等于Vt時,Vc由低變高。這個過程中從積分開始到比較器輸出高電平的時間間隔稱為測量時間Tmeas,這樣根據電路的參數可以通過式(2)計算該間隔。
當電路中Vit,Vis和αt固定不變時,可以發現測量時間Tmeas只跟Vs的斜率αs有關,即只與傳感器流經的電流Is有關。通過測量積分時間就可以得到流過傳感器的電流,再根據式(1)就可以獲得電阻型氣體傳感器的電阻如果參考電壓設定為固定不變,那么在傳感器電阻很大時,電流Is會非常小,積分時間會變得很長,影響傳感器信號的快速測量。使用參考電壓可變的方式可以有效解決大電阻測量時的問題,保證每個周期的測量時間都在確定的范圍內。假設傳感器電阻無窮大,此時αs等于零,電壓Vt會一直積分達到Vis才進行復位,可以計算出最大的測量時間。
最小測量時間根據所測試的傳感器最小電阻來確定,如果電路測量范圍的最小電阻為Rs,min,此時傳感器電流會達到最大,αs遠遠大于αt,所以可以忽略參考電壓積分上升的電壓量,可以計算出最小的測量時間。分析最大最小測量時間的意義在于,能夠確定每個周期的具體時間。由于復位時間是確定的,復位時間加測量時間就是一個測量周期的時間,所以,整個電路系統的最大頻率也就確定了,這對于需要快速響應的測量系統來說十分重要。
1.4軟件測量與復位
在整個接口電路設計中,單片機的作用是捕獲脈沖信號和產生積分電路的復位信號,并且這兩個任務是相互關聯的。可以使用單片機的2個定時器,其中,TIM_A配置成輸入上升沿觸發中斷,用于檢測比較器輸出電壓Vc的上升沿;TIM_B配置成通用計數器并觸發定時中斷,用于記錄復位時間。如圖3所示,當復位信號結束時,電路開始下一個周期的測量,定時器TIM_B開始計數,直到TIM_A檢測到Vc的一個上升沿,TIM_B停止計數并由單片機I/O口產生一個復位信號,在此期間Vo的低電平時間就是Tmeas。在經過確定的復位時間后,單片機重新開啟下一個周期的測量[5]。需要注意的是,在系統上電后,首先單片機需要產生初始啟動信號,系統才能開始連續的多周期測量。單片機可以在一定時間內記錄多個周期的Tmeas并取平均值,然后利用轉換式(3)計算得到待測傳感器的電阻值。
系統在上電復位后進行一系列的初始化,最重要的是產生第一個測量周期的啟動信號,也就是使控制開關的復位電壓Vo由高電平變為低電平,控制SWs和SWt打開,積分電路開始工作,同時開啟定時器TIM_A,然后系統就開始等待定時器中斷。根據電路需要的功能,單片機中兩個定時器中斷函數的程序流程圖。首先,當Vs與Vt交匯時比較器電壓由低變為高,觸發TIM_A定時中斷,此時讀取TIM_A計數值即為Tmeas,隨后關閉TIM_A計數,復位引腳Vo置高并開啟TIM_B開始復位;當設定的復位時間到達時觸發TIM_B定時中斷,關閉TIM_B計數,復位引腳置低結束復位并開啟TIM_A,進入下一個測量周期。在每次中斷函數內任務執行完畢后,需要清除中斷標志位用以響應下一次中斷。采用軟件復位的方式減少了系統的復雜度,同時可以做到方便的修改復位時間,從而調整測量的周期。在軟件復位的同時可以獲得脈沖時間Tmeas,用單片機可以很容易的計算待測電阻Rs的具體數值,進一步證明了使用軟件處理的優越性。
2測試結果
通過使用精度為1%的定值電阻模擬傳感器可變化的電阻來測試電路的性能,并對每個阻值連續采樣100次以進行標準差和線性誤差分析。從1kΩ~500MΩ之間選擇10個不同量級的標準電阻進行測試。為測試的標準阻值;Tmeas為單片機捕獲的測量時間,是100次連續采樣的平均值;Rmeas為使用公式換算后的測量阻值;σRel和εL,Rel分別為測量值與真實值之間的標準差和線性誤差。由于測量電路結構的設計,Tmeas與Rs并不是線性關系,在電阻非常小或非常大時,測量的分辨率會有所下降,而且隨著測量電阻的增大,線性誤差會逐漸增大。在測量的全范圍內,線性誤差都保持在5%之內,滿足測試系統的要求。
3結論
設計的電路通過對電阻在時間尺度上的壓縮,避免了傳統測量方式中的檔位切換,在保證精度的基礎上提高了測量速度,降低了電路的復雜度。實驗測試結果表明:當待測電阻值在1kΩ~500MΩ范圍內變化時,接口電路測量結果的整體線性誤差小于5%且連續采樣標準差小于0.1%,滿足納米材料的氣體傳感器測試需求,具有很大的商業應用潛力,有望應用于電阻測試儀和微弱信號檢測等場合。
參考文獻:
[1]張小秋,汪元元,張柯,等.基于納米材料的氣體傳感器的研究進展[J].傳感器與微系統,2013,32(5):1-5.
[2]丁志杰,李明勇,張小玢.基于數控電阻和恒流源的電阻測量儀[J].電子測量技術,2014,37(7):14-16.
[3]婁正.金屬氧化物半導體復合材料納米結構的構筑及其氣敏性能的研究[D].長春:吉林大學,2014.
[4]馬場清太郎.運算放大器應用電路設計[M].北京:科學出版社,2007.
[5]王晨輝,吳悅,楊凱.基于STM32的多通道數據采集系統設
作者:耿孝謹 王濤 馬宏莉 楊志 段力 張亞非 單位:薄膜與微細技術教育部重點實驗室 上海交通大學 電子信息與電氣工程學院 微納電子學系
閱讀次數:人次
環境設計論文 實驗設計論文 電路設計論文 造型設計論文 優化設計論文
室內設計論文 網頁設計論文 平面設計論文 環境藝術設計論文 服裝設計論文
廣告設計論文 招貼設計論文 園林設計論文 園林景觀設計論文 建筑設計論文
景觀設計論文 字體設計論文 空間設計論文 方案設計論文 家具設計論文
網站設計論文 工程設計論文 系統設計論文 設計管理論文 路面設計論文
照明設計論文 環保設計論文 程序設計論文 結構設計論文 產品設計論文
(
51
)
Int.CI?
權利要求說明書
說明書
幅圖
(
54
)發明名稱
?
氣體傳感器的放大電路
(
57
)摘要
?
本實用新型涉及一種氣體傳感器的放
大電路,其特征在于,包括依次相連的射極
跟隨器、電橋電路、電壓放大電路和濾波電
路,射極跟隨器和電橋電路接收氣體傳感器
輸出的信號,對信號進行單端
/
雙端變換處理
后,將信號輸出至電壓放大電路,電壓放大
電路對信號進行放大后,將信號輸出至濾波
電路,濾波電路對信號進行濾波后,將信號
輸出至下一級電路。本實用新型提供的氣體
傳感器的放大電路,具有抗干擾能力強,共
模抑制比高,設計簡單,成本較低的有益效
下一篇: PLC、DCS、FCS三大控
上一篇: 電氣控制線路圖控制原