中文字幕第二一区_久久久久在线视频_精品国产自在现线看久久_亚洲精品一区二区三区电影网

產品分類

當前位置: 首頁 > 工業電子產品 > 無源元器件 > 碳化硅

類型分類:
科普知識
數據分類:
碳化硅

開發基于碳化硅的25 kW快速直流充電樁:方案概述

發布日期:2022-10-09 點擊率:119

【導讀】在本系列文章的第一部分中,[1]我們介紹了電動車快速充電器的主要系統要求,概述了這種充電器開發過程的關鍵級,并了解到安森美(onsemi)的應用工程師團隊正在開發所述的充電器。現在,在第二部分中,我們將更深入研究設計的要點,并介紹更多細節。特別是,我們將回顧可能的拓撲結構,探討其優點和權衡,并了解系統的骨干,包括一個半橋SiC MOSFET模塊


正如我們所了解的,電動車快速充電器通常含一個三相有源整流前端處理來自電網的AC-DC轉換并應用功率因數校正(PFC),后接一個DC-DC級提供隔離并使輸出電壓適應電動車電池的需要(圖1)。


1640006899459725.png

圖1. 一個含多個功率級的大功率快速直流充電器(左)。電動車快速直流充電系統的高級架構(右)。


鑒于所提出的具挑戰的要求和當前的市場趨勢,系統工程團隊考慮了幾個替代方案來實現這兩個轉換級。最后,結論是在AC-DC級利用6開關有源整流器,在依賴移相調制的DC-DC級利用雙有源橋(DAB)。這兩種架構都支持雙向功能,并有助受益于1200-V SiC模塊技術,1200-V SiC模塊技術是快速和超快直流充電器的基石。接下來,我們將深入研究這兩個主要的功率級。


有源整流升壓級(PFC)


3相6開關有源整流級有助于實現0.99的功率因數和低于7%的總諧波失真,這些都是商用直流充電器系統的常見要求。與T-NPC或I-NPC等3級PFC拓撲結構相比,它提供了一個高效的雙向方案,而且元件數量少。總的來說,這種兩級架構在實現系統要求的同時,也帶來了更勝一籌的性價比。[2]


直流鏈路將在800 V的高電壓下運行,以減少峰值電流,從而最大化能效和功率密度(圖2)。為此,兩級架構需要1200 V的VBD功率開關。


系統的開關頻率被設定為70 kHz,以保持二次諧波低于150 kHz,這使傳導輻射得到控制,并促進符合EN 55011 A類(歐盟)和FCC Part 15 A類(美國)規范(適用于連接到交流電網的系統)。其中,這些規范對注入電網的傳導輻射程度設定了限值。這種方法簡化了EMI濾波器的復雜性,使現成的方案成為適用的理想方案,從而達到本項目的目的。


26.jpg

圖2. 三相6開關拓撲結構,帶有功率因數校正(PFC)的有源整流級,也被稱為PFC級。


雙有源全橋(DC-DC)


DAB的DC-DC級將含兩個全橋、一個25千瓦的隔離變壓器和一個初級側的外部漏電感,以實現零電壓開關(ZVS)(圖3)。在單變壓器結構中實現該轉換器有利于雙向運行。此外,具有單變壓器的轉換器的對稱性有助于最大化功率開關的ZVS的工作范圍,從而實現高能效。


這解決了該項目面臨的一個重大挑戰,最大化寬輸出電壓范圍(200 V至1000 V)的能效,使DC-DC的峰值目標能效達98%。該轉換器的工作頻率為100 kHz,這是個折衷方案,以將開關損耗以及將磁性元件的磁芯和交流損耗保持在合理的水平。


此外,該系統將在變壓器上運行磁通平衡控制,這種技術省去了在DAB移相結構中與變壓器一起工作所需的笨重的串聯電容器。在這快速充電器轉換器中,給定50 A的高均方根(RMS)工作電流、幾百伏的必要額定電壓和十分之幾微法的估計電容值,這種電容將在嚴格的要求下運行。以目前的現有技術,所有這些要求將導致一個大尺寸的電容器。因此,磁通平衡控制策略有助于減小系統的尺寸、重量和成本。


總的來說,DAB DC-DC轉換器為電動車快速充電器提供了一個全方位考慮的方案,它正在成為這新的快速充電器市場的一個典型方案。這種拓撲結構可以利用移相調制,在寬輸出電壓范圍提供高功率和能效。此外,開發人員可充分利用他們對傳統全橋移相ZVS轉換器的專知,因為這兩種系統之間有相似之處。


另一種方案是CLLC諧振轉換器,這是一種頻率調制拓撲結構,在有限的輸出電壓范圍內運行時,通常提供最高的轉換器峰值能效。這種轉換器是對LLC的改版,允許雙向工作。然而,控制、優化和調整CLLC以實現雙向功能,并在較寬的輸出電壓范圍實現高輸出功率可能會變得很麻煩,需要結合頻率調制和脈沖寬度調制。


27.jpg

圖3. 雙有源橋(DAB)DC-DC級。該系統含有兩個全橋,中間有一個隔離變壓器。


工作電壓和功率模塊


AC-DC和DC-DC級之間的直流鏈路將在高壓(800 V)下運行,以減少電流值,從而最大化能效和功率密度。輸出電壓將在200 V至1000 V之間擺動(如前所述)。由于轉換器是基于兩級拓撲結構,因此需要1200-V的擊穿電壓開關才能在這樣的電壓水平上運行。


NXH010P120MNF1半橋SiC模塊(圖4)含1200 V、10 mΩ SiC MOSFET,是PFC級和DC-DC轉換器的骨干。該模塊具有超低RDS(ON),大大降低了導通損耗,且最小化的寄生電感降低開關損耗(與分立替代器件相比)。


28.jpg

圖4. NXH010P120MNF1 SiC模塊采用2-PACK半橋拓撲結構和1200-V、10-mΩ SiC MOSFET,用于實現AC-DC和DC-DC轉換器。


功率模塊封裝的卓越導熱性提高了功率密度(相對于分立SiC器件),減少了冷卻需求,并實現了小占位和強固的方案。SiC模塊成為一個重要元素,可在緊湊型和輕型系統的AC-DC和DC-DC級中分別實現>98%的能效。


此外,模塊賦能磁性元件縮減尺寸,適用于更高開關頻率,而減少的冷卻基礎架構要求有利于降低整個系統的每瓦成本。在25千瓦的電動車直流充電樁功率級中,在SiC模塊上使用基于風扇的主動冷卻,應足以有效地減少系統中的損耗。電容器和磁性元件的選擇旨在最大限度地減少其冷卻要求,同時滿足技術規范。


控制模式和策略


數字控制將運行系統,依靠強大的通用控制板(UCB),[3]它采用Zynq-7000 SoC FPGA和基于ARM的芯片。這樣一個多功能的控制單元有助于測試和輕松運行數字領域的多種控制方法——如單相移位、擴相移位和雙相移位,以及DAB變壓器上的磁通平衡——并處理所有板載和外部通信。將使用兩個UCB單元,一個用于PFC級,另一個用于DC-DC。


驅動器


門極驅動器對整個系統的性能和能效也至關重要。為了充分利用SiC技術,必須高效地驅動SiC MOSFET并確保快速轉換。與硅基器件不同,SiC MOSFET通常工作在線性區域(而不是飽和狀態)。在選擇適當的VGS時需要考慮的一個重要方面是,與硅基器件不同,當VGS增加時,即使在相對較高的電壓下,SiC MOSFET也仍會表現出RDS(ON)的顯著改善。[4]


為了確保最低的RDS(ON),并大大減少導通損耗,建議導通時使用+20 V的VGS。對于關斷,建議使用-5 V,這樣可以減少“關斷”過渡期間的損耗,并提高魯棒性,防止意外導通。


此外,高驅動電流是必要的,以實現適合SiC MOSFET的高dV/dt,這也有助于最小化開關損耗。考慮到這一點,PFC和dc-dc級選用NCD57000 5-kV電隔離大電流驅動器。


該單通道芯片確保了快速開關轉換,源/汲電流+4-A和-6-A,并耐用,顯示出高共模瞬態抗擾度(CMTI)。由于采用了分立式輸出,導通和關斷的門極電阻是獨立的(圖5),允許單獨優化導通和關斷的dV/dt值并減少損耗。


1640006846718109.png

圖5. 帶有DESAT保護和分立輸出的隔離門極驅動器的簡化應用原理圖。


此外,片上的DESAT功能對于確保SiC晶體管所需的快速過流保護非常有利,其特點是短路耐受時間比IGBT更短。下橋驅動系統將復制上橋驅動系統,這是用于快速開關系統的高功率應用中經驗證的好的做法。


隔離和電路的對稱性(上橋和下橋)有助于防止來自不同來源的問題(EMI、噪聲、瞬態等),從而實現一個更強固的系統。+20-V和-5-V隔離偏置電源將由SECO-LVDCDC3064-SiC-GEVB提供,具有工業標準的引腳布局。


關鍵物料單


表1概述了將用于設計的關鍵半導體元件和功能塊。


表1. 25-kW電動車直流充電樁中采用的關鍵半導體元器件

1640006823207521.png


整合一切


圖6顯示了上面介紹的所有系統器件如何在實際設計中組合在一起以提供一個完整的方案。圖7讓您很好地了解實際硬件的外觀。


PFC級位于DC-DC級的頂部,形成了一個緊湊而全面的結構。這些模塊的整體尺寸加起來最大為380×345×(200至270)毫米(長×寬×高),高度隨封裝的電感器件而異。最終,這些25千瓦的單元可以堆疊在一起,在一個超快速的電動車直流充電樁中實現更高的功率水平。


后續部分簡介


在本系列文章的后續部分,我們將進一步詳細討論三相PFC級和DAB移相轉換器的開發,包括仿真和其他系統考量。最后將展示測試結果。


31.jpg

圖6. 25 kW電動車直流充電樁的高級框圖


32.jpg

圖7. 實際PFC(左)和dc-dc(右)級的3D模型。SiC模塊位于每個散熱器下面。在這些模型中,可以看到門極驅動電源、通用控制器板(UCB)和無源塊。這些組件的其他視圖可以在以下在線視頻中看到。


33.png

掃描二維碼觀看視頻


參考文獻


1. “Developing A 25-kW SiC-based Fast DC Charger (Part 1): The EV Application” by Oriol Filló, Karol Rendek, Stefan Kosterec, Daniel Pruna, Dionisis Voglitsis, Rachit Kumar and Ali Husain, How2Power Today, April 2021.

2. “Demystifying Three-Phase PFC Topologies” by Didier Balocco, How2Power Today, February 2021.

3. SECO-TE0716-GEVB product page.

4. ON Semiconductor Gen 1 1200 V SiC MOSFETs & Modules: Characteristics and Driving Recommendations,” application note AND90103/D.

5. NXH010P120MNF1: SiC Module product page.

6. NCD57000 product page. 

7. SECO-LVDCDC3064-SIC-GEVB product page.

8. NCD98011 product page.

9. NCID9211 product page.

10. NCS21xR product page.

11. SECO-HVDCDC1362-15W15V-GEVB product page.



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


推薦閱讀:


為您揭秘下一代智能電表是如何工作的!

磁懸浮軸承——電力電子在高速旋轉機械領域的應用

在當今高壓半導體器件上執行擊穿電壓和漏流測量

擔心柵極驅動器的絕緣能力?采用'BIER'測試吧

談一談電源系統噪聲來源

下一篇: PLC、DCS、FCS三大控

上一篇: 太陽能捕獲效率低?看

推薦產品

更多
中文字幕第二一区_久久久久在线视频_精品国产自在现线看久久_亚洲精品一区二区三区电影网

      9000px;">

          久久先锋资源网| 国产目拍亚洲精品99久久精品| 国产日韩精品一区二区三区 | 日韩国产精品久久久久久亚洲| 欧美在线高清视频| 青青草国产精品亚洲专区无| 国产欧美一区二区三区在线看蜜臀| 国产99久久久国产精品潘金| 亚洲一区二区三区四区在线观看 | 日韩精品91亚洲二区在线观看| 精品国产精品网麻豆系列| av毛片久久久久**hd| 日韩精品乱码av一区二区| 国产欧美日韩综合精品一区二区| 欧美午夜精品久久久久久超碰| 狠狠色综合色综合网络| 亚洲激情校园春色| 欧美videos大乳护士334| 99久久精品情趣| 黄色成人免费在线| 天使萌一区二区三区免费观看| 国产免费成人在线视频| 337p亚洲精品色噜噜| 9色porny自拍视频一区二区| 精品影视av免费| 亚洲电影在线免费观看| 中文一区在线播放| 精品国精品国产尤物美女| 欧美日韩中文一区| 91理论电影在线观看| 国产黑丝在线一区二区三区| 美女视频黄 久久| 亚洲福利电影网| 亚洲精品免费在线播放| 国产日韩欧美亚洲| 精品久久国产老人久久综合| 91精品国产欧美一区二区成人| 91丝袜美女网| www.亚洲免费av| 国产成人av福利| 国产麻豆精品久久一二三| 日本不卡高清视频| 五月激情综合网| 亚洲成人一二三| 亚洲图片欧美一区| 亚洲影视在线观看| 亚洲国产日韩综合久久精品| 伊人性伊人情综合网| 亚洲手机成人高清视频| 亚洲欧洲美洲综合色网| 国产精品看片你懂得| 久久精品视频一区二区三区| 欧美国产日韩精品免费观看| 26uuu亚洲综合色| 久久久久久久综合狠狠综合| 精品国产免费人成在线观看| 精品久久久久久久久久久久久久久久久 | 国产日韩亚洲欧美综合| 精品美女一区二区| 欧美日本在线一区| 8x8x8国产精品| 日韩视频一区二区三区在线播放| 欧美视频在线观看一区| 99久久免费视频.com| 99久久免费视频.com| 色婷婷久久久久swag精品| 97久久人人超碰| 色综合中文字幕| 欧美日韩午夜影院| 欧美一区二区三区日韩| 久久在线免费观看| 中文在线一区二区| 亚洲www啪成人一区二区麻豆| 蜜臀av性久久久久蜜臀aⅴ| 国产精品一区二区91| 成人免费毛片app| 欧美体内she精视频| 欧美不卡激情三级在线观看| 一区精品在线播放| 青青草成人在线观看| 成人性生交大片免费看中文网站| 色久综合一二码| 精品国产欧美一区二区| 一区二区三区**美女毛片| 久久精品国产在热久久| 91丨porny丨国产入口| 日韩欧美亚洲另类制服综合在线| 国产精品二区一区二区aⅴ污介绍| 亚洲444eee在线观看| 成人动漫一区二区| 日韩一区二区中文字幕| 国产精品久久久久久久久免费桃花| 亚洲成av人片观看| 国产成人鲁色资源国产91色综 | 亚洲欧洲美洲综合色网| 美日韩一区二区| 在线观看区一区二| 久久久精品免费网站| 婷婷国产v国产偷v亚洲高清| 99这里都是精品| 26uuu精品一区二区在线观看| 五月婷婷激情综合| 91蜜桃在线免费视频| 国产午夜精品一区二区三区四区| 日韩中文字幕1| 欧美亚洲禁片免费| 中文字幕一区二区三区四区| 国产一区999| 欧美一区二区私人影院日本| 一区二区三区91| 成人av电影在线| 久久久久久久久久看片| 美女视频网站久久| 日韩欧美国产综合在线一区二区三区| 一区二区三区欧美视频| 色综合久久精品| 亚洲影院理伦片| 懂色av中文字幕一区二区三区 | 精品国产99国产精品| 天天亚洲美女在线视频| 91久久国产综合久久| 亚洲色图丝袜美腿| 色就色 综合激情| 亚洲另类春色校园小说| 99久久综合国产精品| 国产精品动漫网站| 成人免费视频网站在线观看| 中文字幕在线观看一区| 91免费看片在线观看| 一区二区在线看| 欧美在线观看视频在线| 香蕉加勒比综合久久| 欧美精品三级日韩久久| 奇米精品一区二区三区在线观看| 日韩无一区二区| 国产伦精品一区二区三区免费迷 | 成人丝袜视频网| 中文字幕久久午夜不卡| 97精品久久久午夜一区二区三区| 樱桃国产成人精品视频| 欧美三级电影精品| 久久国产福利国产秒拍| 国产日韩欧美亚洲| 日本韩国欧美国产| 日韩福利视频网| 久久婷婷综合激情| 99精品视频一区| 天堂在线亚洲视频| 久久久精品黄色| 在线精品视频一区二区| 蜜乳av一区二区| 久久精品人人做人人综合 | 成人丝袜18视频在线观看| 亚洲码国产岛国毛片在线| 欧美日韩国产高清一区| 精品亚洲国内自在自线福利| 亚洲色图色小说| 欧美日韩国产首页| 青娱乐精品视频在线| 国产精品久久二区二区| 欧美日韩免费高清一区色橹橹| 精品夜夜嗨av一区二区三区| 亚洲激情图片小说视频| 欧美电视剧免费全集观看| 成人教育av在线| 日日夜夜免费精品| 国产精品久久久久影院| 日韩一级大片在线| 91麻豆国产精品久久| 韩国成人福利片在线播放| 亚洲高清免费观看| 亚洲视频一二区| 久久精品夜夜夜夜久久| 欧美一区日韩一区| 欧美色网一区二区| 99久久婷婷国产精品综合| 国产在线视频不卡二| 日韩精彩视频在线观看| 亚洲综合一二三区| 日韩一区在线免费观看| 国产日产欧美一区| 精品国产91久久久久久久妲己| 欧美三级在线看| 色综合久久天天| 成人激情视频网站| 国产一区二区91| 国内一区二区在线| 久久超碰97中文字幕| 日韩黄色免费电影| 天天综合日日夜夜精品| 亚洲国产日产av| 一区二区三区高清在线| 尤物视频一区二区| 一区二区三区色| 亚洲一区自拍偷拍| 一区二区三区四区不卡在线 | 国产精品国产三级国产普通话99| 久久视频一区二区| 精品乱码亚洲一区二区不卡| 欧美一区二区三区男人的天堂|