產品分類

      當前位置: 首頁 > 工業電氣產品 > 工業繼電器 > 功率模塊

      類型分類:
      科普知識
      數據分類:
      功率模塊

      解析三菱電機6.5kV全SiC功率模塊

      發布日期:2022-10-09 點擊率:110 品牌:信捷_XINJIE

      【導讀】本文介紹了6.5kV新型全SiC MOSFET功率模塊的內部結構和電氣特性,相對于傳統的Si IGBT模塊、傳統全SiC MOSFET功率模塊,新型全SiC MOSFET功率模塊在靜態特性、動態特性和損耗方面優勢明顯。

       

      三菱電機開發了首款6.5kV全SiC(Silicon Carbide)功率模塊,采用高絕緣耐壓HV100標準封裝(100mmÍ140mm)。通過電磁仿真和電路仿真,優化了HV100封裝的內部設計,并通過實際試驗驗證了穩定的電氣特性。6.5kV HV100全SiC功率模塊為了提高功率密度,將SiC SBD(Schottky Barrier Diode)與SiC MOSFET芯片集成在一起。

       

      在續流時,集成的SiC SBD會導通,而SiC MOSFET的寄生體二極管不會導通,所以避免了雙極性退化效應發生。本文對比了Si IGBT功率模塊(Si IGBT芯片和Si二極管芯片)、傳統全SiC MOSFET功率模塊(SiC MOSFET芯片,無外置SBD)和新型全SiC MOSFET功率模塊(SiC MOSFET和SiC SBD集成在同一個芯片上),結果表明新型全SiC MOSFET功率模塊在高溫、高頻工況下優勢明顯。

       

      1、引 言

       

      SiC材料具有優異的物理性能,由此研發的SiC功率模塊可以增強變流器的性能[1-2]。相對Si芯片,全SiC芯片可以用更小的體積實現更高耐壓、更低損耗,給牽引變流系統和電力傳輸系統的研發設計帶來更多便利。3.3kV全SiC功率模塊已經在牽引變流器中得到應用,有著顯著的節能、減小變流器體積和重量等作用[3-4]。6.5kV Si IGBT模塊已經用于高鐵和電力傳輸系統,這些市場期待6.5kV SiC功率模塊能帶來更多好處。基于此,三菱電機開發了6.5kV全SiC MOSFET功率模塊[5-7],其采用HV100標準封裝[8],如圖1所示。這個封裝為方便并聯應用而設計,電氣穩定性顯得尤為重要。

       

      解析三菱電機6.5kV全SiC功率模塊

       

      本文介紹了6.5kV新型全SiC MOSFET功率模塊的內部結構和電氣特性,相對于傳統的Si IGBT模塊、傳統全SiC MOSFET功率模塊,新型全SiC MOSFET功率模塊在靜態特性、動態特性和損耗方面優勢明顯。

       

      2、6.5kV新型SiC MOSFET功率模塊特性

       

      2.1  集成SiC SBD的SiC-MOSFET芯片特性

       

      HV100封裝6.5kV新型全SiC MOSFET功率模塊采用SiC MOSFET和SiC SBD一體化芯片技術,最高工作結溫可達175℃。

       

      模塊設計中的一個重要難點是避免SiC MOSFET的寄生體二極管(PIN二極管)導通,一旦PIN二極管中有少子(空穴)電流流向二極管的陰極(SiC MOSFET的漏極),因為SiC芯片外延層特性,雙極性退化效應發生的可能性就會增加。在續流狀態下,SiC SBD的正向飽和壓降在全電流范圍內比SiC MOSFET的寄生體二極管要低。

       

      獨立放置的SiC MOSFET 和SiC SBD芯片如圖2(a)所示,SiC SBD的面積是SiC MOSFET芯片面積的3倍;如果將SiC SBD集成在SiC MOSFET芯片上面,如圖2(b)所示,總面積是單個SiC MOSFET芯片面積的1.05倍。集成在SiC MOSFET芯片上面的SiC SBD采用垂直元胞結構,在續流時承載全部反向電流,同時使SiC MOSFET芯片的寄生體二極管不流過電流,從而消除雙極性退化效應。如圖2所示,由于芯片面積減小,模塊整體體積就可以減小。相對于傳統的Si IGBT模塊和傳統全SiC MOSFET功率模塊,采用相同HV100封裝的新型全SiC MOSFET功率模塊可以實現業界最高的功率密度。

       

      解析三菱電機6.5kV全SiC功率模塊

       

      2.2  新型SiC MOSFET功率模塊的優化設計

       

      6.5kV新型全SiC MOSFET功率模塊內部采用半橋拓撲,一般的大功率應用可以采用并聯連接來提高輸出功率。高電壓功率模塊在高頻下運行,需要考慮模塊自身的寄生電容、寄生電感和寄生阻抗等。3D電磁仿真是驗證內部封裝結構和芯片布局的一種有效方法。電磁干擾可能帶來三種不良的影響:一是開關過程中的電流反饋;二是上、下橋臂開關特性不一致;三是柵極電壓振蕩。電磁干擾會增加模塊內部功率芯片布置、綁定線連接及其他電氣結構設計的復雜性。

       

      我們構建了6.5kV新型全SiC MOSFET功率模塊的內部等效電路和芯片模型,通過3D電磁仿真和電路仿真,驗證了功率模塊設計的合理性。

       

      2.2.1

       

      優化開關速度

       

      如果在模塊封裝設計時沒有考慮電磁干擾,在實際工況中,就會產生開關過程中的電流反饋,使芯片的固有開關速度發生變化,進而可能造成上橋臂和下橋臂的開關速度不一致。負的電流反饋可以降低芯片的開關速度,導致芯片的開關損耗增加,因此開關速度的不平衡可以導致模塊內部各個芯片的熱分布不一致。圖3顯示了6.5kV新型全SiC MOSFET功率模塊在有電磁干擾和無電磁干擾下的仿真開通波形,從圖中可以看出,通過優化內部電氣設計,電磁干擾對6.5kV新型全SiC MOSFET功率模塊沒有影響。圖4為6.5kV新型全SiC MOSFET功率模塊上橋臂和下橋臂的仿真開通波形,兩者的波形幾乎完全一樣,在實際測試時也驗證了這一點。

       

      解析三菱電機6.5kV全SiC功率模塊

       

      2.2.2

       

      柵極電壓振蕩抑制

       

      在高電流密度功率模塊中,內部有很多功率芯片并聯,寄生電容和寄生電感可能組成復雜的諧振電路,從而可能造成柵極電壓振蕩。柵極電壓振蕩幅度過大,可能損壞柵極。通常可以增大芯片內部的門極電阻來達到抑制振蕩的目的,但是增大內部門極電阻會造成開關損耗增加,在設計模塊時,我們希望內部柵極電阻盡可能小。借助仿真手段,在保持小的柵極電阻的情況下,我們通過優化內部電氣布局很好地抑制了柵極電壓振蕩。

       

      解析三菱電機6.5kV全SiC功率模塊

       

      圖5為6.5kV新型全SiC MOSFET功率模塊在優化內部設計之前和優化之后的柵極電壓仿真波形。優化之前,有一個比較大的振蕩,振幅可達13V。優化之后,柵極電壓振蕩得到抑制,幅度只有2V,在實際測試中也驗證了這一點。

       

      2.3  靜態特性參數對比

       

      圖6為400A IGBT模塊(從額定電流1000A IGBT轉換而來)、400A傳統全SiC MOSFET功率模塊(不含SiC SBD)和400A新型全SiCMOSFET功率模塊通態壓降對比。在150℃時,SiIGBT的通態電阻比較低,這是因為Si IGBT是雙極性器件,而SiC MOSFET屬于單極性器件。400A傳統全SiC MOSFET功率模塊(不含SiC SBD)和400A新型全SiCMOSFET功率模塊芯片面積幾乎相同,所以在全溫度范圍內其通態電阻也幾乎相同。

       

      二極管正向壓降對比如圖7和圖8所示。圖7是各模塊件在非同步整流狀態(MOSFET不導通)下二極管電流特性的對比,圖8為各模塊在同步整流狀態(MOSFET導通)下二極管電流特性的對比。從圖中可以看出,在非同步整流狀態下,傳統SiC-MOSFET功率模塊的表現呈非線性特性;而新型全SiC MOSFET功率模塊,無論在同步整流還是非同步整流時,都呈線性特征。由上,無論在MOSFET導通狀態,還是在二極管導通狀態,全SiC MOSFET功率模塊都表現出單極性器件的特性。

       

      解析三菱電機6.5kV全SiC功率模塊

       

      解析三菱電機6.5kV全SiC功率模塊

       

      2.4  動態特性參數對比

       

      圖9為新型全SiC MOSFET功率模塊在3600V/400A 在室溫和高溫下(175℃)的開通波形對比,從圖中可以看出,經過內部結構優化的新型全SiC MOSFET功率模塊上橋臂和下橋臂在室溫和高溫下的開關速度幾乎完全一樣,所以其室溫和高溫下的損耗也幾乎一樣。一般來說,隨著溫度的增加(載流子壽命增加),反向恢復電流也會隨之增加,但是如圖9所示,高溫下的反向恢復電荷(Qrr)相對常溫增加很少。與靜態特性一樣,新型全SiC MOSFET功率模塊在動態特性上表現出單極性器件的特性。

       

      解析三菱電機6.5kV全SiC功率模塊

       

      2.5  實測開關波形和開關損耗對比

       

      圖10為傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的開通波形在室溫和175℃下對比,從圖中可以看出在室溫下,兩者波形很接近,但是在175℃下,傳統全SiCMOSFET功率模塊反向恢復電流更大,VDS下降速度更慢。而新型全SiC MOSFET功率模塊因為反向恢復電流小,所以其VDS下降速度更快。同時這些特性表明兩者的開通損耗和反向恢復損耗在室溫下非常接近,但是在高溫下,新型全SiC MOSFET功率模塊的開通損耗和反向恢復損耗相對更小,主要原因是反向恢復時,新型全SiCMOSFET功率模塊的寄生體二極管不導通。

       

      解析三菱電機6.5kV全SiC功率模塊

       

      在175℃時,傳統全SiC MOSFET功率模塊在開通時會有一個比較大的振蕩,而振蕩可能造成電磁干擾,進而影響模塊的安全工作。實際應用中,希望這個振蕩越小越好,為了抑制振蕩,可以減緩模塊開關速度或者增加外部吸收電路。但是對于新型全SiC MOSFET功率模塊,在高溫下振蕩非常小,無需采取額外措施來抑制振蕩。

       

      在高壓全SiC MOSFET功率模塊中,造成以上差異的主要原因是傳統全SiC MOSFET功率模塊有一層厚的外延層,在反向恢復時會產生比較大的反向恢復電流。

       

      圖11為Si IGBT模塊、傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的開關損耗對比(Si IGBT模塊與全SiCMOSFET功率模塊分別設置在最佳開關速度)。從圖中可以看出,全SiC MOSFET功率模塊損耗明顯小于Si IGBT模塊。并且,在175℃時,新型全SiC MOSFET功率模塊比傳統全SiC MOSFET功率模塊開通損耗低18%,反向恢復損耗低80%。

       

      解析三菱電機6.5kV全SiC功率模塊

       

      3、損耗對比

       

      在開關頻率fs=0.5kHz、2kHz和10kHz,PF=0.8,調制比M=1,母線電壓VCC=3600V,輸出電流IO=200A的工況下,對比了采用Si IGBT模塊(150℃)、傳統全SiC MOSFET功率模塊(175℃)和新型全SiC MOSFET功率模塊(175℃)的逆變器損耗,如圖12所示。從圖中可以看出,在fs=0.5kHz,通態損耗占很大比例,此時全SiC MOSFET功率模塊比Si IGBT模塊低64%,同時傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊相差很小。

       

      在fs=2kHz,全SiC MOSFET功率模塊比Si IGBT模塊低85%,而新型全SiC MOSFET功率模塊相對傳統全SiCMOSFET功率模塊低7%。在fs=10kHz,開關損耗占據很大比例,此時全SiC MOSFET功率模塊比Si IGBT功率模塊低92%,而新型全SiC MOSFET功率模塊相對傳統全SiCMOSFET功率模塊低16%。從以上可以看出,新型全SiCMOSFET功率模塊更適合高頻、高溫應用。

       

      解析三菱電機6.5kV全SiC功率模塊

       

      4、結 論

       

      三菱電機開發了業界首款采用HV100封裝的新型6.5kV全SiC MOSFET功率模塊。通過電磁仿真、電路仿真和實際測試,確認了內部電氣設計的合理性。同時,新型6.5kV全SiC MOSFET功率模塊采用SiC SBD和SiC MOSFET一體化芯片設計,減小了模塊體積,實現了6.5kV業界最高的功率密度。通過靜態測試和動態測試,確認了新型6.5kV全SiC MOSFET功率模塊無論在SiC MOSFET導通還是SiC SBD導通時都表現出單極性器件的特性,且其SiC SBD在高溫下反向恢復電流小,沒有雙極性退化效應。新型6.5kV全SiC MOSFET功率模塊在高溫下導通時VDS下降更快,其導通損耗更小,且沒有振蕩現象發生。

       

      同時,對比了Si IGBT模塊、傳統全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的損耗,在開關頻率為10kHz時,新型全SiCMOSFET功率模塊的損耗比Si IGBT模塊大概低92%,比傳統全SiC MOSFET功率模塊相對低16%。相對傳統全SiC MOSFET功率模塊,由于SiC MOSFET體二極管與集成的SiC SBD之間反向恢復特性的不同,新型全SiC MOSFET功率模塊在高溫、高頻等應用工況下更有優勢。

       

       

      推薦閱讀:

       

      工業過渡:實現可信的工業自動化

      選擇正確的開關:交流和直流大有不同

      熱電阻四線制、三線制、兩線制的區別對比分析

      PT100熱電阻三線制和二線制接法區別

      優劣幾何?三角法和TOF 激光雷達大解析!

      下一篇: PLC、DCS、FCS三大控

      上一篇: 全息光波導:了解智能

      推薦產品

      更多
      主站蜘蛛池模板: 亚洲线精品一区二区三区影音先锋| 亚洲一区二区三区久久| 国产人妖视频一区二区破除| 亚洲一区二区精品视频| 亚洲AV日韩AV天堂一区二区三区 | 国模无码人体一区二区| 久久中文字幕无码一区二区| 日本一区二区三区在线看| 久久久国产精品一区二区18禁| 福利国产微拍广场一区视频在线| 日韩精品乱码AV一区二区| 成人午夜视频精品一区| 视频一区二区精品的福利| 久久中文字幕无码一区二区 | 中日韩一区二区三区| 亚洲第一区二区快射影院| 亚洲乱码国产一区三区| 国产在线精品一区免费香蕉| aⅴ一区二区三区无卡无码| 丝袜美腿一区二区三区| 国产亚洲情侣一区二区无| 日本精品夜色视频一区二区| 日韩aⅴ人妻无码一区二区| 亚洲AV成人一区二区三区在线看| 日韩内射美女人妻一区二区三区 | 久久久久国产一区二区| 一区 二区 三区 中文字幕| 国产一区二区三区在线免费| 国产日韩视频一区| 精品视频午夜一区二区| 精品亚洲一区二区三区在线观看| 精品国产一区二区三区AV性色| 亚洲av片一区二区三区| 在线视频一区二区三区三区不卡| 一区二区三区国产| 国产精品福利一区二区| 久久精品免费一区二区喷潮| 一区二区免费电影| 亚洲AV无码一区东京热| 精品欧美一区二区在线观看| 国产一区二区三区手机在线观看|